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Scala is a general purpose programming language
designed to express common programming

patterns in a concise, elegant, and type-safe way.
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Scala is a general purpose programming language
designed to express common programming

patterns in a concise, elegant, and way.
Concise & elegant: Unlike Java

Type-safe: Unlike Python, Ruby, PHP etc.
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Language that runs on the JVM
Compiles to regular .class files

Interoperable with Java
Call Java code from Scala

Call certain Scala code from Java
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Use a library written in Scala

Just put the jar in your lib dir
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Use a library written in Scala

Just put the jar in your lib dir

Write some parts of your Play app in Scala

Install the scala module, and create scala files

Use Play's Scala API, templates and DAL

Write controllers and models in scala and views in
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Play Scala module provides:

Scala compiler

Scala API, taylored to power of Scala
Anorm SQL data access layer

Type-safe templating system
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Play Scala module provides:

Scala compiler

Scala API, taylored to power of Scala
Anorm SQL data access layer
Type-safe templating system

Fix the bug, reload & wait cycle
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Controllers
Templates

Anorm
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Scala objects, extending Controller

Actions return values like Ok, Html, Text, Json,

Action or Redirect
Or plain strings, xml or binary streams

Composition with traits
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object App extends Controller
def index = "Hello!"
def greeter(name: String = "world"

hl>Hello {name hl

def greeter2(name: Option[String
"Hello " + name.getOrElse("you"
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Scala based, very concise
Type safe

Compile to plain Scala
Very fast

Easily composable
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@(customer:models.Customer, orders:Seq/ models.Order
<hl>Welcome @customer.name!</hl>
@if(orders
<h2>Here is a list of your current orders:</h2>
<ul>
@orders.map { order
<li>@order.title</li>

</ul>

else
<h2>You don't have any order yet...</h2>
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main.scala.html:
@ (title:String)(content Html
hl>@Etitle</hl
div id="main"

@content
div

Part of Application/index.scala.html:

@main(title = "Home"
hl>Home page</hl
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In some template:
@notice("error" color
Oops, something is <span style="color:@color">wrong</span
In tags/notice.scala.tag:
@(level:String = "error")(body: (String Html
@level match

case "success"
p class="success">@body("green")</p

case "error"
p class="error">@body("red")</p
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ORM is required in java

Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

But JPA is not expressive

There's a great and expressive DSL for

databases...
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ORM is required in java

Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

But JPA is not expressive

There's a great and expressive DSL for

databases... SQL

And Scala is great for transforming data
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SQL Strings, easy, expressive and powerful but not

type safe
Pattern matching or parser combinators
for retrieval

Magic helper to automatically create parsers for

case classes
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case class Country
code: Id[String
name: String
population: Int
headOfState: Option|[String

object Country extends Magic|/Country

val countries:List|Country SQL("select *
from Country").as(Country
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Using JPA?

Using modules?

Writing a module?

Tool support?

Should you use it in production?

Roadmap
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scala> slides.filter (! .done) .length
resO: Int 0

erik.bakker@lunatech.com

@eamelink
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