
Play framework

and Scala
2011-08-12 – Erik Bakker - @eamelink - lunatech.com

What is Scala?

Scala is a general purpose programming language

designed to express common programming

patterns in a concise, elegant, and type-safe way.

What is Scala?

Scala is a general purpose programming language

designed to express common programming

patterns in a concise, elegant, and type-safe way.

Concise & elegant: Unlike Java

What is Scala?

Scala is a general purpose programming language

designed to express common programming

patterns in a concise, elegant, and type-safe way.

Concise & elegant: Unlike Java

Type-safe: Unlike Python, Ruby, PHP etc.

Scala

Language that runs on the JVM

Compiles to regular .class files

Interoperable with Java

> Call Java code from Scala

> Call certain Scala code from Java

Ways to use Scala in Play

Use a library written in Scala

> Just put the jar in your lib dir

Ways to use Scala in Play

Use a library written in Scala

> Just put the jar in your lib dir

Write some parts of your Play app in Scala

> Install the scala module, and create scala files

Ways to use Scala in Play

Use a library written in Scala

> Just put the jar in your lib dir

Write some parts of your Play app in Scala

> Install the scala module, and create scala files

Use Play's Scala API, templates and DAL

> Write controllers and models in scala and views in

scala templates.

Play Scala Module

Play Scala module provides:

Scala compiler

Scala API, taylored to power of Scala

Anorm SQL data access layer

Type-safe templating system

Play Scala Module

Play Scala module provides:

Scala compiler

Scala API, taylored to power of Scala

Anorm SQL data access layer

Type-safe templating system

Fix the bug, reload & wait cycle

Sort of outline

Controllers

Templates

Anorm

Controllers

Scala objects, extending Controller

Actions return values like Ok, Html, Text, Json,

Action or Redirect

Or plain strings, xml or binary streams

Composition with traits

Controllers

object App extends Controller {

 def index = "Hello!"

 def greeter(name: String = "world") = {
 <h1>Hello {name}</h1>;
 }

 def greeter2(name: Option[String]) = {
 "Hello " + name.getOrElse("you");
 }

}

Templates

Scala based, very concise

Type safe

Compile to plain Scala

Very fast

Easily composable

Templates

@(customer:models.Customer, orders:Seq[models.Order])

<h1>Welcome @customer.name!</h1>

@if(orders) {

 <h2>Here is a list of your current orders:</h2>

 @orders.map { order =>
 @order.title
 }

} else {
 <h2>You don't have any order yet...</h2>
}

Template composition

main.scala.html:

@(title:String)(content: => Html)

<h1>@title</h1>
<div id="main">
 @content
</div>

Part of Application/index.scala.html:

@main(title = "Home") {
 <h1>Home page</h1>
}

Tags

In tags/notice.scala.tag:

@(level:String = "error")(body: (String) => Html)

@level match {
 case "success" => {
 <p class="success">@body("green")</p>
 }

 case "error" => {
 <p class="error">@body("red")</p>
 }
}

In some template:

@notice("error") { color =>
 Oops, something is wrong
}

Anorm philosophy

ORM is required in java

> Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

> But JPA is not expressive

There's a great and expressive DSL for

databases...

Anorm philosophy

ORM is required in java

> Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

> But JPA is not expressive

There's a great and expressive DSL for

databases... SQL

Anorm philosophy

ORM is required in java

> Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

> But JPA is not expressive

There's a great and expressive DSL for

databases... SQL

And Scala is great for transforming data

Anorm

SQL Strings, easy, expressive and powerful but not

type safe

Pattern matching or parser combinators

for retrieval

Magic helper to automatically create parsers for

case classes

Anorm

case class Country(
 code: Id[String],
 name: String,
 population: Int,
 headOfState: Option[String]
)

object Country extends Magic[Country]

val countries:List[Country] = SQL("select *
 from Country").as(Country*)

Finally

Using JPA?

Using modules?

Writing a module?

Tool support?

Should you use it in production?

Roadmap

24

erik.bakker@lunatech.com

@eamelink

www.lunatech.com

scala> slides.filter(!_.done).length
res0: Int = 0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

