LUNATECH

E RESEARCH

2011-08-12 - Erik Bakker - @eamelink - lunatech.com

Scala is a general purpose programming language
designed to express common programming

patterns in a concise, elegant, and type-safe way.

LUNATECH

ﬁ RESEARCH

Scala is a general purpose programming language
designed to express common programming

patterns in a , , and type-safe way.

Concise & elegant: Unlike Java

LUNATECH

Scala is a general purpose programming language
designed to express common programming

patterns in a concise, elegant, and way.
Concise & elegant: Unlike Java

Type-safe: Unlike Python, Ruby, PHP etc.

LUNATECH

Language that runs on the JVM
Compiles to regular .class files

Interoperable with Java
Call Java code from Scala

Call certain Scala code from Java

LUNATECH

ﬁ RESEARCH

Use a library written in Scala

Just put the jar in your lib dir

LUNATECH

E RESEARCH

Use a library written in Scala

Just put the jar in your lib dir

Write some parts of your Play app in Scala

Install the scala module, and create scala files

LUNATECH

E RESEARCH

Use a library written in Scala

Just put the jar in your lib dir

Write some parts of your Play app in Scala

Install the scala module, and create scala files

Use Play's Scala API, templates and DAL

Write controllers and models in scala and views in

LUNATECH

E RESEARCH

Play Scala module provides:

Scala compiler

Scala API, taylored to power of Scala
Anorm SQL data access layer

Type-safe templating system

LUNATECH

Play Scala module provides:

Scala compiler

Scala API, taylored to power of Scala
Anorm SQL data access layer
Type-safe templating system

Fix the bug, reload & wait cycle

LUNATECH

Controllers
Templates

Anorm

LUNATECH

E RESEARCH

Scala objects, extending Controller

Actions return values like Ok, Html, Text, Json,

Action or Redirect
Or plain strings, xml or binary streams

Composition with traits

LUNATECH

object App extends Controller
def index = "Hello!"
def greeter(name: String = "world"

hl>Hello {name hl

def greeter2(name: Option[String
"Hello " + name.getOrElse("you"

LUNATECH
ﬁ RESEARCH

Scala based, very concise
Type safe

Compile to plain Scala
Very fast

Easily composable

LUNATECH

@(customer:models.Customer, orders:Seq/ models.Order
<hl>Welcome @customer.name!</hl>
@if(orders
<h2>Here is a list of your current orders:</h2>

@orders.map { order
@order.title

else
<h2>You don't have any order yet...</h2>

LUNATECH
ﬁ RESEARCH

main.scala.html:
@ (title:String)(content Html
hl>@Etitle</hl
div id="main"

@content
div

Part of Application/index.scala.html:

@main(title = "Home"
hl>Home page</hl

LUNATECH

ﬁ RESEARCH

In some template:
@notice("error" color
Oops, something is wrong</span
In tags/notice.scala.tag:
@(level:String = "error")(body: (String Html
@level match

case "success"
p class="success">@body("green")</p

case "error"
p class="error">@body("red")</p

LUNATECH
ﬁ RESEARCH

ORM is required in java

Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

But JPA is not expressive

There's a great and expressive DSL for

databases...

LUNATECH

E RESEARCH

ORM is required in java

Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

But JPA is not expressive

There's a great and expressive DSL for

databases... SQL

LUNATECH

ﬁ RESEARCH

ORM is required in java

Plain JDBC is cumbersome, with checked

exceptions and messy data transformations

But JPA is not expressive

There's a great and expressive DSL for

databases... SQL

And Scala is great for transforming data

LUNATECH

ﬁ RESEARCH

SQL Strings, easy, expressive and powerful but not

type safe
Pattern matching or parser combinators
for retrieval

Magic helper to automatically create parsers for

case classes

LUNATECH

case class Country
code: Id[String
name: String
population: Int
headOfState: Option|[String

object Country extends Magic|/Country

val countries:List|Country SQL("select *
from Country").as(Country

LUNATECH
ﬁ RESEARCH

Using JPA?

Using modules?

Writing a module?

Tool support?

Should you use it in production?

Roadmap

LUNATECH

scala> slides.filter (! .done) .length
resO: Int 0

erik.bakker@lunatech.com

@eamelink

LUNATECH

E RESEARCH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

